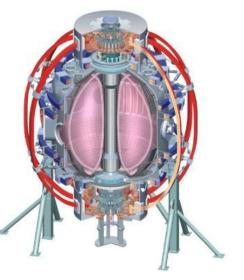


Supported by


NSTX FY2010 Research Program Overview

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J. Menard, PPPL

For the NSTX Research Team

NSTX FY2010 Research Forum Plenary Session Tuesday December 1, 2009

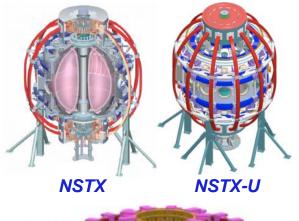
Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

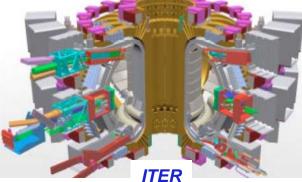
Outline

- NSTX Mission
- Organization
- Run Time Allocation
- Prioritization
- FY09 Research Highlights +
 FY10 Milestones and Priorities
- Forum Action Items

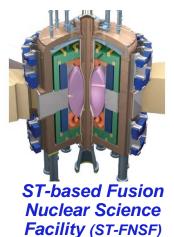
NSTX Mission Elements

Understand unique physics properties of ST


- Assess impact of low A, high β , high v_{fast} / v_A on toroidal plasma science
- Longer term NSTX \rightarrow NSTX-Upgrade goals:
 - Study high beta plasmas at reduced collisionality
 - Access full non-inductive start-up, ramp-up, and sustainment
 - Prototype solutions for mitigating high heat, particle exhaust


Complement tokamak physics, support ITER

- Exploit unique ST features to improve tokamak understanding
- Benefit from tokamak R&D


Establish attractive ST operating conditions

- Understand and utilize ST for addressing key gaps between ITER and FNSF / DEMO
 - ST ReNeW Thrusts 14 (FNS), 13 (PMI), 8 (self-driven high-Q_{DT})
- Advance ST as fusion energy source

NSTX research forum organization

- Forum home-page: http://nstx-forum-2010.pppl.gov/
 - Follow "Submit Experimental Proposal Idea" link to submit your ideas
 - Remote connection info is at top of "Agenda" page on forum website
- •The NSTX research program is organized by science area into 7 Topical Science Groups (TSGs)
- Final review + scheduling of experimental proposals led by run coordinators:

Coordinator	Deputy	
Eric Fredrickson	Steve Sabbagh	
eric@pppl.gov	sabbagh@pppl.gov	
609-243-2945	609-243-2645	

Topical Science Group	Leader	Deputy	Theory and Modeling
Advanced Scenarios and Control	Stefan Gerhardt	Michael Bell	Egemen Kolemen
	sgernhard@pppl.gov	mbell@pppl.gov	ekolemen@pppl.gov
	609-243-2823	609-243-3282	609-243-3731
Boundary Physics	Vlad Soukhanovskii	Rajesh Maingi	Daren Stotler
	<u>vlad@pppl.gov</u>	rmaingi@pppl.gov	dstotler@pppl.gov
	609-243-2064	609-243-3176	609-243-2063
Lithium Research	Charles Skinner	Bob Kaita	Daren Stotler
	cskinner@pppl.gov	<u>rkaita@pppl.gov</u>	dstotler@pppl.gov
	609-243-2214	609-243-3275	609-243-2063
Macroscopic Stability	Steve Sabbagh	Jon Menard	Jong-Kyu Park
	<u>sabbagh@pppl.gov</u>	jmenard@pppl.gov	jpark@pppl.gov
	609-243-2645	609-243-2037	609-243-3513
Solenoid-free Start-up and Ramp-up	Roger Raman	Dennis Mueller	Steve Jardin
	rraman@pppl.gov	mueller@pppl.gov	sjardin@pppl.gov
	609-243-2855	609-243-3239	609-243-2635
Transport and Turbulence	Howard Yuh	Stan Kaye	Taik-Soo Hahm
	<u>hyuh@pppl.gov</u>	<u>skaye@pppl.gov</u>	<u>thahm@pppl.gov</u>
	609-243-2710	609-243-3162	609-243-2611
Wave-Particle Interactions	Gary Taylor	Mario Podesta	Nikolai Gorelenkov
	gtaylor@pppl.gov	mpodesta@pppl.gov	ngorelen@pppl.gov
	609-243-2573	609-243-3526	609-243-2552

• Operate approx March 1 to ~July/Aug 2010

Run-time guidance for FY2010 run

- FY2010 run-time allocation = 15 run weeks = 75 run days
- 15 days for cross-cutting + calibrations including 5-10 days for restart w/ LLD + shot/scenario development with LLD → 60 run days for TSGs
- Complete 1st priority experiments with 75% of total \rightarrow 45 run days
 - OFES Joint Facility and NSTX Research Milestone XPs are highest priority, and should be completed within this run-time allocation
- TSGs should develop plans for 1st +2nd priority according to allocation below
 - TSG's are **NOT** guaranteed to receive the full allocation shown
 - Actual allocation will be decided at mid-run assessment

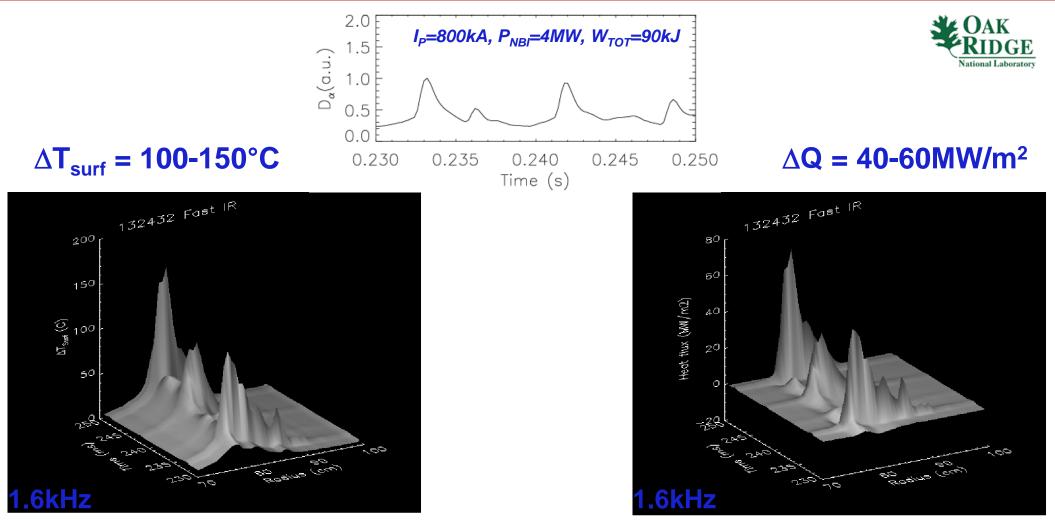
TSG	1st priority	1st + 2nd	
	XP run days	priority XPs	Milestones
Advanced Scenarios and Control	5.5	8	
Boundary Physics	8	10	Joint, R(10-3)
Lithium Research	5.5	8	
Macroscopic Stability	6	8	R(10-1)
Solenoid-free Start-up and Ramp-up	4.5	6	
Transport and Turbulence	5.5	7	
Wave-Particle Interactions	6	8	R(10-2)
ITER high priority	4	5	
Total	45	60	

Some programmatic considerations for XP prioritization

(in approximate priority order)

- Viability of proposal given available NSTX capabilities
- OFES Joint Research Milestones
- NSTX Research Milestones
 - Annual milestones + other ST high priority research
 - NSTX-Upgrade design needs expected high priority:
 - Disruption load diagnosis and characterization
 - Heat flux mitigation strategies novel magnetic geometries, detachment
 - Particle and impurity control for long-pulse
- ITER high priority research
- ITPA especially where NSTX is lead/prominent experiment
- Experiments potentially leading to high profile publications:
 PRL, Science, Nature
- Career development (thesis, post-doctoral research)
- Any good idea generated during the course of the run

Some frequently asked questions prior to/during forum...

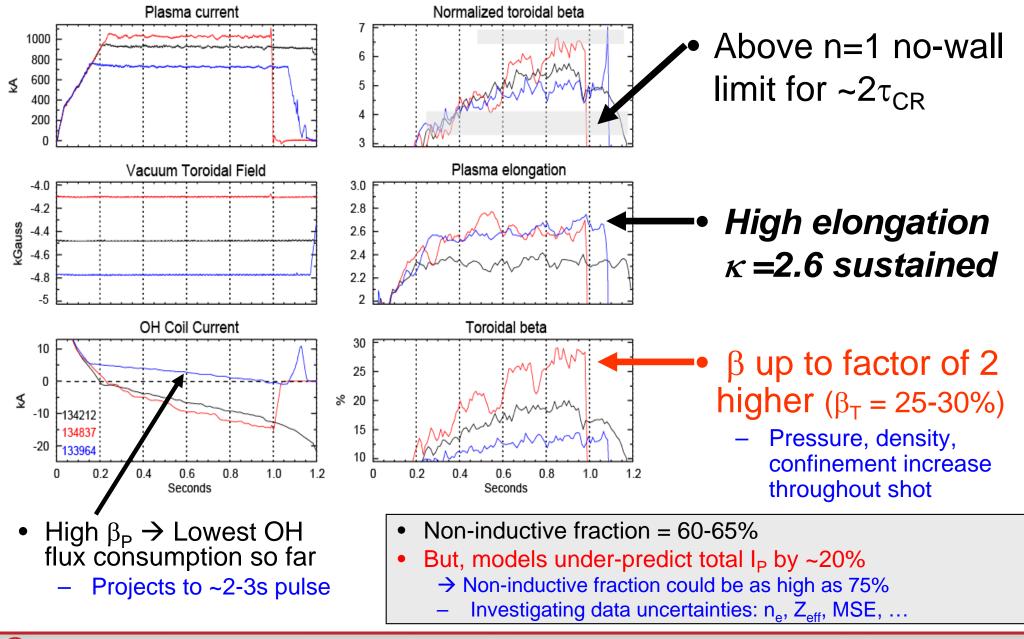

- •Q: Will NSTX have a counter-I_P campaign in FY2010?
 - A: Very unlikely emphasis will be on milestones + LLD, HHFW, BES, and further, NSTX only has 15 run weeks – 2 less than FY2009
- •Q: Will NSTX have a reversed- B_T campaign in FY2010?
 - A: This is possible if there is strong (and broad) scientific justification
- •Q: Which TSG should this proposal be submitted to?
 - A: If unclear, decision will generally be made based on TSG expertise needed to get best results, and which TSGs have run-time + available XP leaders
- •Q: Is this a Lithium or Boundary or ASC proposal?
 - A: A bit of a gray area... but here is the **Lithium Research TSG** scope:
 - Diagnostic and PMI/divertor proposals focusing on LLD-specific issues and operation
 - XPs to "commission" and "characterize" the LLD, compare to LITER-only from FY09
 - Li dropper research, and Li-related development work such as evaporation of Li into He, on-purpose evaporation of Li from plates
 - XPs to diagnose, understand, and reduce/eliminate <u>sources</u> of impurity accumulation during Li ELM-free H-mode
 - Tests / challenges of Li-related theory and modeling

Outline

- NSTX Mission
- Organization
- Run Time Allocation
- Prioritization
- FY09 Research Highlights +
 FY10 milestones and priorities
- Forum action items

FY09 First fast IR camera data measuring ELM-resolved variation of divertor surface temperature and heat-flux

Short ELM rise time gives only one frame for a rising ELM even at 1.6kHz


ELMs push strike point out by 2-3cm

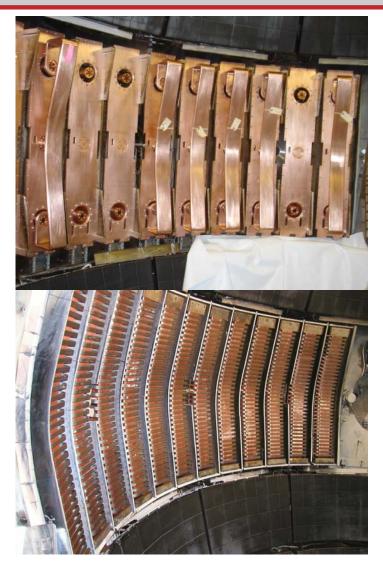
• Important for understanding ELM heat loss, projecting ELM interaction with LLD

Boundary Physics FY2010 OFES Joint Research Milestone

- "Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrapeoff layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER."
- Milestone elements:
 - Measure the divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer in multiple devices to investigate the underlying thermal transport processes.
 - Utilize unique characteristics of C-Mod, DIII-D, and NSTX to enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality, beta, parallel heat flux, and divertor geometry).
 - Coordinate experiments using common analysis methods to generate a data set that will be compared with theory and simulation

FY09 ASC milestone Sustained high-elongation and wall-stabilized operation was extended from $\beta_T = 15-20\%$ to 20-30%

() NSTX


NSTX FY2010 Research Forum Overview (Menard)

Macroscopic Stability FY2010 NSTX Research Milestone

- R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit:
- Utilize new mode control tools/software to characterize and quantify the achievable beta sustainment and disruption avoidance in the ST:
 - $-\beta_N$ control via active control of applied neutral beam power
 - Improvements in RFA and RWM detection via sensor compensation
 - Improvements to the RWM feedback algorithm via avanced state-space control
 - Real-time feedback on measured RFA (future)
- Characterize degree to which other instabilities (2/1 NTM) impact disruptivity
- Improve predictive capability:
 - Measure mode characteristics with SXR, magnetics, MSE, and calculate ideal beta limits, plasma response to 3D fields, RWM stability and control (DCON, IPEC, MISK, MARS-F/K, and VALEN)

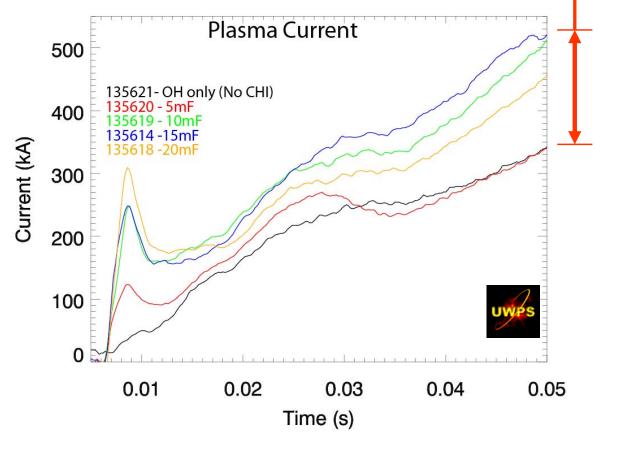
FY09 HHFW group successfully completed antenna upgrade + external loop installation during NSTX operations


 Achieved new record T_e(0) = 6keV, produced RF-heated H-mode for L-H threshold studies.

Wave-Particle Interaction FY2010 NSTX Research Milestone

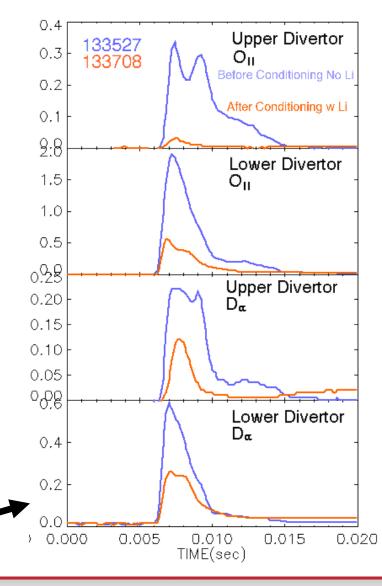
- R(10-2): Characterize HHFW heating, current drive, and current ramp-up in deuterium H-mode plasmas.
- Over-arching goal: Establish HHFW as a reliable, high-power H&CD tool for start-up and sustainment, transport studies, scenario optimization...
- Milestone Goals:
 - Sustain 100% non-inductive plasma with BS + RFCD at any I_P
 - Develop bootstrap current over-drive ramp-up of ST plasma for the first time
 - Heat electrons in reduced-n_e NBI sustained H-mode to enhance NBICD
 - Develop HHFW as central current drive profile control tool in D H-mode
- Improve predictive capability:
 - Simulate, understand BS+HHFW I_P ramp-up/sustainment (TSC, TRANSP)
 - Measure HHFW acceleration of NBI fast-ions and compare to theory, and assess impact on advanced scenarios with strong NBI heating (CQL-3D, AORSA, TORIC, GENRAY)

FY09 ELM triggering using n=3 perturbations optimized to control density and radiation, maintain high confinement

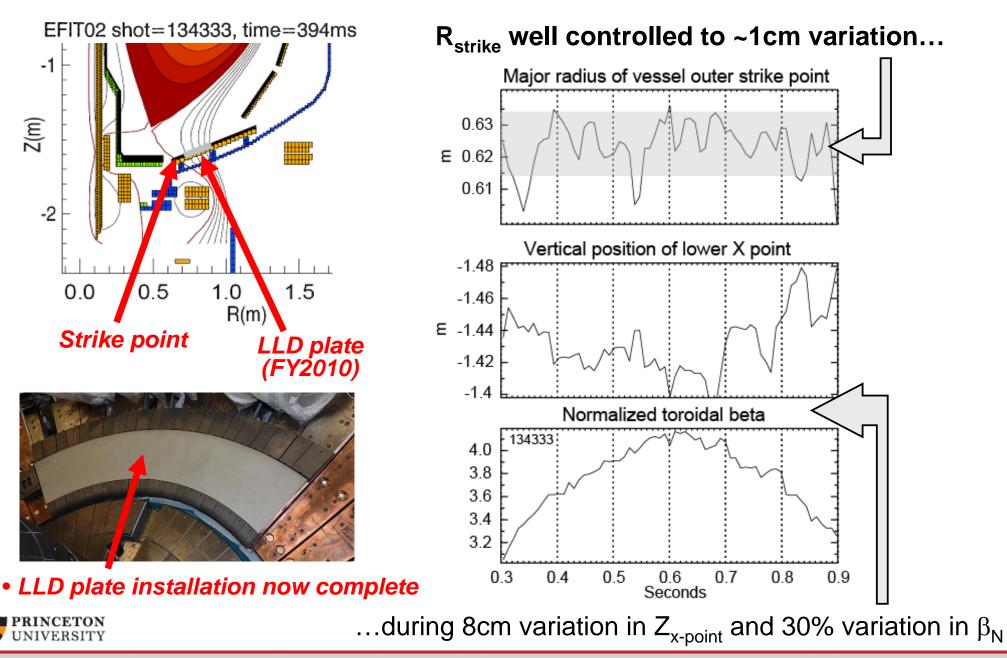

Boundary Physics FY2010 NSTX Research Milestone

- R(10-3): Assess H-mode pedestal characteristics and ELM stability as a function of collisionality and lithium conditioning
- Determine the relative roles of reduced pedestal density and collisionality versus the possible direct effects of lithium
- Utilize particle pumping and density control from LITER, LITER+LLD
- Assess L-to-H threshold, pedestal height and barrier width, pedestal stability (affecting ELM type and size), and the down-stream divertor plasma and surface conditions
- Improve predictive capability:
 - Pedestal: Compare experimental profiles to prediction (XGC, GTC-Neo)
 - ELMs: Utilize high-resolution kinetic equilibrium reconstructions + linear and non-linear ELM-stability codes (ELITE, PEST, M3D), compare to experiment

FY09 Extensive conditioning campaign improved divertor conditions for successful coupling of CHI to induction



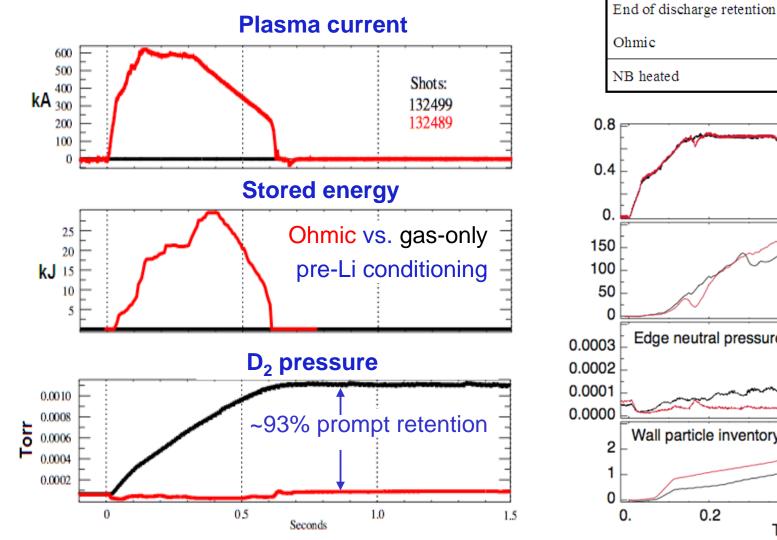
Upper divertor conditioned with NBI-heated USN plasmas


• Li evaporation used to reduce oxygen, increase D pumping

Lower divertor conditioned with sustained CHI plasma

CHI voltage duration (absorber arcs) reduced

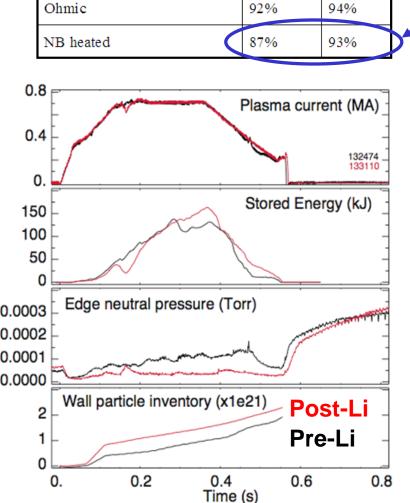
FY09 Control of lower divertor strike-point implemented to enable and optimize operation with LLD in FY2010



NSTX FY2010 Research Forum Overview (Menard)

NSTX

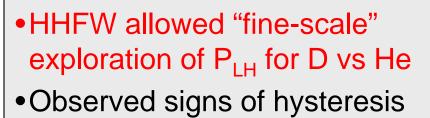
NSTX contributed to hydrogenic retention FY09 Joint Milestone milestone important for NSTX Li pumping, ITER T retention

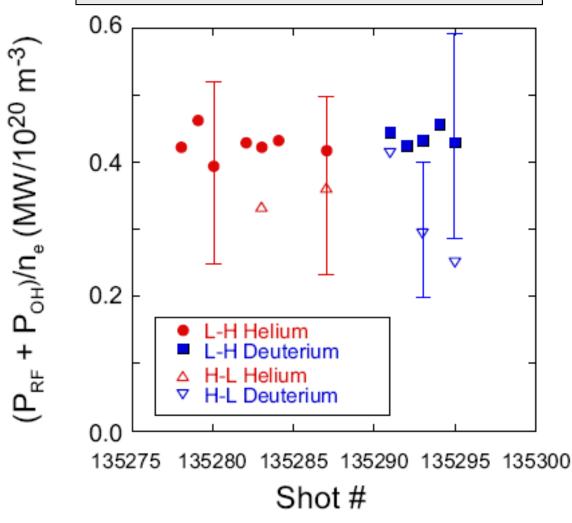

Gas balance measurements show high (~90%) prompt D retention

Impact of Li on retention is largest for NBI heated plasmas

Before Li

With Li

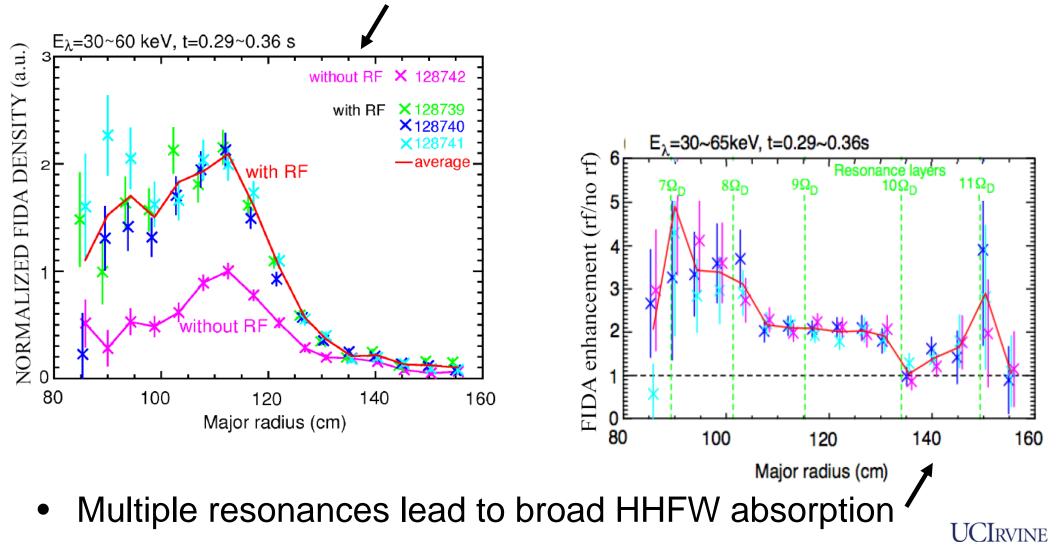



Operational and new tool/diagnostic utilization goals for those TSGs without FY2010 milestones (1)

This list is <u>only a subset</u> of TSG goals, but these items should be addressed before/during the forum:

- Solenoid-Free Start-Up and Ramp-up
 - Demonstrate 300kA of OH flux savings with CHI (increase from 200kA)
 - Couple HHFW into CHI \rightarrow OH target during I_P ramp-up, heat plasma to > 1keV
 - With WPI: Demonstrate 100% HHFW+BS non-inductive sustainment at any I_P
 - With WPI: Ramp-up current from ~200kA to higher I_P with HHFW+BS
- Advanced Scenario and Control
 - Develop/assess HHFW as control tool in advanced scenarios:
 - Reliably increase central $\rm T_e$ of moderate-high power NBI H-mode with HHFW
 - Assess impurity accumulation vs. HHFW power during Li ELM-free H-modes
 - Heat NBI H-mode during ramp-up to modify J profile evolution
 - Attempt on-axis HHFW CD during NBI H-mode to modify core q-shear
- Lithium Research
 - Oversee and organize development of XMPs and XPs for LLD commissioning
 - Organize XPs to diagnose, understand, and reduce/eliminate <u>sources</u> of impurity accumulation during Li ELM-free H-mode (expected during LLD operation)

FY09 P_{LH} similar for He and D plasmas (high priority ITER issue) (several other threshold scaling trends were also measured in FY09)

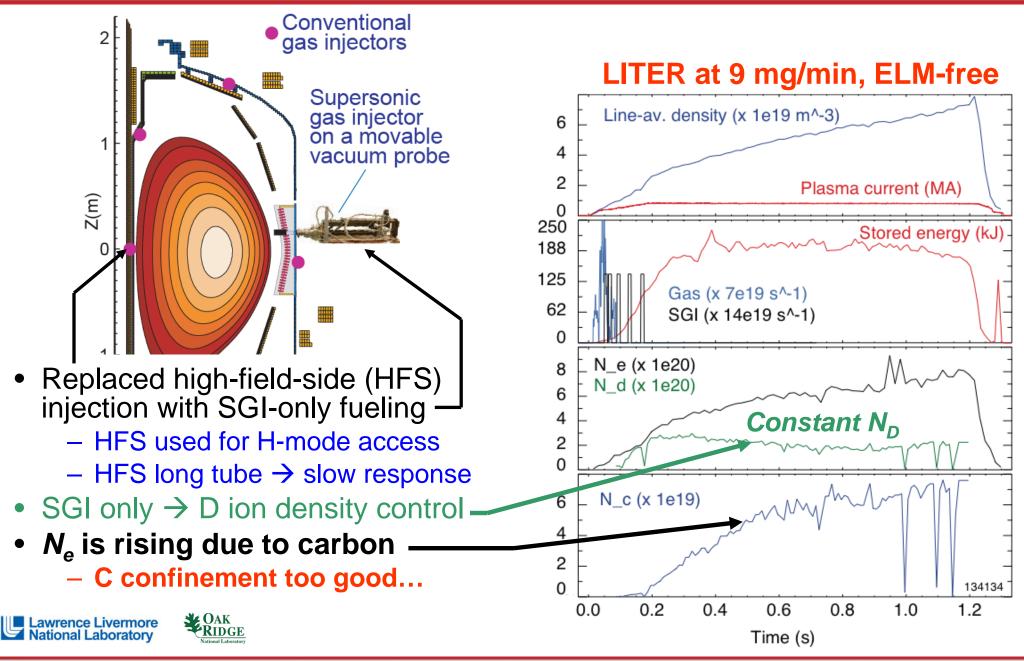


Other scaling trends:

- Plasma current
 - P_{LH} / n_e increased ~2× for I_P = 0.7MA → 1MA
- Lithium coatings
 - P_{LH} / n_e decreased ~35% with Li evaporation
- 3D field strength
 - P_{LH} / n_e increased ~65% with 3-4 × higher n=3 field

FY08-09 FIDA diagnostic measured broad HHFW-fast-ion absorption profile due to presence of multiple resonances

- Fast-ion density profile broadens over most of minor radius
 - Central region (R=80-120 cm) shows more pronounced effects


Operational and new tool/diagnostic utilization goals for those TSGs without FY2010 milestones (2)

This list is <u>only a subset</u> of TSG goals, but these items should be addressed before/during the forum:

• Transport and Turbulence

- Utilize LLD + HHFW to explore impact of reduced v^* on ion & electron transport
- Extend high-k measurements of GAE, k-scaling of ETG turbulence
- Obtain a physics result from BES this year (if diagnostic is ready) examples:
 - Perform initial correlations of ion thermal or momentum transport with $\delta n/n$
 - Measure low-k and high-k at same r/a, assess e-transport correlation with k
- Measure X-ray emission to study fast electron transport from μ -tearing, GAE, ...
- Energetic Particles:
 - Extend FIDA measurements of fast-ion acceleration by HHFW to HHFW+NBI scenarios developed in the ASC group
 - Use linear BES array to measure radial profile of AE eigenfunction in H-mode

FY09 Supersonic gas injection (SGI) enabled control of D⁺ content in LITER ELM-free discharges, but C⁶⁺ dominates N_e

Some <u>examples</u> of XP ideas supporting ITER high priority research

From ITER Physics Work Programme 2009-2011

Sections 2.1 - ITER Short term activities (2008-2010) and 2.2 - ITER Medium term activities (2011 and beyond)

- 2.1.1 Transport and Confinement during transient phases
 Assess NSTX confinement, H-mode threshold, etc. during ramp-up/down
- 2.1.2 Access to high confinement regimes in ITER during steady/state and ramp-up/down H, D and DT phases
 - Complete/extend NSTX L-H, H-L threshold experiments from FY2009
- 2.1.3 Characterization of proposed schemes for active ELM control, compatibility with scenario requirements.
 - Contribute NSTX understanding of RMP ELM pacing results
- 2.2.1 Pedestal width, pedestal energy and uncontrolled ELM energy loss in ITER
 Utilize OFES 3 facility joint research milestone on pedestal structure in FY2011
- 2.2.2 Development of alternative regimes providing high fusion performance in ITER without or with small ELMs compatible with overall scenario requirements
 - Extrapolate NSTX Type V ELMs to low v^* ?
- 2.2.3 Development of alternative methods for ELM control/suppression in ITER and integration with scenario requirements.
 - Extend NSTX vertical jogs and RMP fields for ELM pacing to smaller ELM size
 - Develop NSTX Li ELM-free H-mode with reduced/halted impurity accumulation
- 2.2.6 Momentum transport in ITER reference scenarios and expected plasma rotation in ITER.
 - Use NSTX HHFW to reduce input torque, use NB pulse+CHERS and/or X-ray crystal for Ti and rotation

NSTX is presently participating in 25 ITPA joint experiments

Advanced scenarios and control

- IOS-5.1 Ability to obtain and predict off-axis NBCD
- IOS-5.2 Maintaining ICRH Coupliing in expected ITER Regime

• Boundary Physics and Lithium Research

- PEP-6 Pedestal structure and ELM stability in double null
- PEP-16 C-MOD/NSTX/MAST small ELM regime comparison
- PEP-19 Edge transport under the influence of resonant magnetic perturbations
- PEP-25 Inter-machine comparison of ELM control using mid-plane RMP coils
- DSOL-15 Inter-machine comparison of blob characteristics
- DSOL-21 Introduction of pre-characterized dust for dust transport studies in divertor and SOL

• Macroscopic Stability

- MDC-2 Joint experiments on resistive wall mode physics
- MDC-4 Neoclassical tearing mode physics aspect ratio comparison
- MDC-12 Non-resonant magnetic braking
- MDC-13 Vertical stability physics/performance limits in highly elongated plasmas
- MDC-14 Rotation effects on neoclassical tearing modes
- MDC-15 Disruption database development
- MDC-17 Physics-based disruption avoidance

Transport and Turbulence

- TC-1 Confinement scaling in ELMy H-modes: beta degradation
- TC-2 Power ratio hysteresis and access to H-mode with H~1
- TC-3 Scaling of the Low-Density Limit of the H-mode Threshold
- TC-4 H-mode transition and confinement dependence on ionic species
- TC-9 Scaling of intrinsic plasma rotation with no external momentum input
- TC-10 Experimental identification of ITG, TEM and ETG turbulence and comparison with codes
- TC-12 H-mode transport and confinement at low aspect ratio
- TC-15 Dependence of momentum and particle pinch on collisionality
- Waves-Particle Interactions
 - EP-1 Measurement of damping rate of intermediate toroidal mode number Alfvén Eigenmodes
 - EP-2 Fast ion losses and redistribution from localized Alfvén Eigenmodes

What will NSTX contribute to ITPA in 2010?

- The 8th IEA/ITPA Joint Experiment Workshop (W71) will be held 15-16, December, 2009 in Daejeon, Korea.
 - Purpose of this meeting is to finalize the list of Joint Experiments proposed for 2010 – Stan Kaye will represent NSTX
- TSG leaders: Please review the last Joint Experiment list circulated by Stan, and provide him with the following:
 - For each of the experiments to which NSTX committed, have we completed our experimental work? Analysis work? Etc.
 - In which Joint Expts will NSTX participate next year?, what level?
 - Are there any new Joint Expts that were developed at the recent ITPA meetings relevant to your science area?, will NSTX participate?
 - Are there any Joint Expts that are not on the list that you feel should be (and with which other devices)?

Forum action items for TSG leaders and proposers

- Actively solicit input from the entire team experimentalists, modelers, and theorists – to develop an extensive but goalrelevant list of ideas and proposals
- Organize, listen, question proposal presentation and plans
- Develop a prioritized XP idea lists based on run-time guidance for use in planning FY2010 run
- Identify FY2010 ITPA joint expts NSTX should participate in
 Send information to Stan Kaye by December 7, 2009

